Фигурные числа были известны ещё в глубокой древности. Предполагают, что впервые они появились в школе Пифагора. Числа древними греками, а вместе с ним Пифагором и пифагорейцами мыслились зримо, в виде камешков, расположенных на песке или на счётной доске – абаке. По этой причине греки не знали нуля, т. к. его невозможно было «увидеть». Но и единица ещё не была полноправным числом, а представлялась как некий «числовой атом», из которого образовывались все числа. Пифагорейцы называли единицу «границей между числом и частями», т. е. между целыми числами и дробями, но в то же время видели в ней «семя и вечный корень». Число же определялось как множество, составленное из единиц. Особое положение единицы как «числового атома», роднило её с точкой, считавшейся «геометрическим атомом». Вот почему Аристотель писал: «Точка есть единица, имеющая положение, единица есть точка без положения».
Таким образом, пифагорейские числа в современной терминологии – это натуральные числа. Числа – камешки раскладывались в виде правильных геометрических фигур. Эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Фигурные числа, по мнению пифагорейцев, играют важную роль в структуре мироздания. О них много говорится в пифагорейских учебниках арифметики, созданных Никомахом Геразским и Теоном Смирнским. Изучением фигурных чисел занимались многие математики античности: Эратосфен, Гипсикл и другие. Диофант Александрийский написал большое исследование о свойствах многоугольных чисел, фрагменты которого дошли до наших дней.
Таким образом, пифагорейские числа в современной терминологии – это натуральные числа. Числа – камешки раскладывались в виде правильных геометрических фигур. Эти фигуры классифицировались. Так возникли числа, сегодня именуемые фигурными. Фигурные числа, по мнению пифагорейцев, играют важную роль в структуре мироздания. О них много говорится в пифагорейских учебниках арифметики, созданных Никомахом Геразским и Теоном Смирнским. Изучением фигурных чисел занимались многие математики античности: Эратосфен, Гипсикл и другие. Диофант Александрийский написал большое исследование о свойствах многоугольных чисел, фрагменты которого дошли до наших дней.
Изучите материал по ссылке и выполните задание http://files.school-collection.edu.ru/dlrstore/3f694401-bf99-389d-eb5e-839722ce94fe/00155481978574512.htm
1) Разложите числа 471, 289, 562, 318 на сумму треугольных, квадратных и пятиугольных чисел. Может быть вам удастся разложить эти число на сумму других k-угольных чисел.
Задание